
  

Mathematical Induction
Part Two



  

Outline for Today

● Variations on Induction
● Starting later, taking different step sizes, and 

more!
● Complete Induction

● When one assumption isn’t enough!



  

Recap from Last Time



  

Let P be some predicate. The principle of mathematical 
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts true…
…and it stays 

true…

…then it's 
always true.



  

Theorem: The sum of the first n powers of two is 2n – 1.
 

Proof: Let P(n) be the statement “the sum of the first n
powers of two is 2n – 1.” We will prove, by induction, that
P(n) is true for all n ∈ ℕ, from which the theorem follows.

 

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 20 – 1. Since
the sum of the first zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

 

For the inductive step, assume that for some arbitrary
k ∈ ℕ that P(k) holds, meaning that

 

20 + 21 + … + 2k-1 = 2k – 1. (1)
 

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k+1 – 1. To see this,
notice that

 

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))
= 2(2k) – 1
= 2k+1 – 1.

 

Therefore, P(k + 1) is true, completing the induction. ■
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New Stuff!



  

Variations on Induction: 
Starting Later

Step Sizes Other than +1



  

Induction Starting at 0

● To prove that P(n) is true for all natural 
numbers greater than or equal to 0: 
● Show that P(0) is true. 
● Show that for an arbitrary k ≥ 0, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to 0. 



  

Induction Starting at m

● To prove that P(n) is true for all natural 
numbers greater than or equal to m: 
● Show that P(m) is true. 
● Show that for an arbitrary k ≥ m, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to m. 



  

Variations on Induction: Bigger Steps



  

Subdividing a Square
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Subdividing a Square

These regions aren’t 
squares.

These regions aren’t 
squares.



  

Subdividing a Square

Squares can’t 
overlap or hang off 

the figure.

Squares can’t 
overlap or hang off 

the figure.



  

For what values of n can a square be 
subdivided into n squares?
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1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.



  

1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.

# corners: 4

# squares: <4



  

1   2   3   4   5   6   7   8   9   10   11   12

Each of the original 
corners needs to be 
covered by a corner 
of the new smaller 
squares.

By the pigeonhole 
principle, at least 
one smaller square 
needs to cover at 
least two of the 
original square’s 
corners.
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# corners: 4

# squares: 5



  

1   2   3   4   5   6   7   8   9   10   11   12

# corners: 4

# squares: 5

At least one square 
cannot be covering 
any of the original 
corners
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An Insight
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An Insight

1

4

4

7

7

10

Quick check: We know 
we can do 1, 4, 7, 10. 

Based on this sequence, 
what are the next 3 sizes 
we know we can do? Go 

to 
PollEv.com/cs103spr25 

Quick check: We know 
we can do 1, 4, 7, 10. 

Based on this sequence, 
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we know we can do? Go 
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An Insight
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An Insight

● If we can subdivide a square into n squares, we 
can also subdivide it into n + 3 squares.

● Since we can subdivide a bigger square into 6, 7, 
and 8 squares, we can subdivide a square into n 
squares for any n ≥ 6:

● For multiples of three, start with 6 and keep adding 
three squares until n is reached.

● For numbers congruent to one modulo three, start 
with 7 and keep adding three squares until n is 
reached.

● For numbers congruent to two modulo three, start 
with 8 and keep adding three squares until n is 
reached.



  

Theorem: For any n ≥ 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n ≥ 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

 
For the inductive step, assume that for some arbitrary k ≥ 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We want to show P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction. ■
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Generalizing Induction
● When doing a proof by induction,

● feel free to use multiple base cases, and
● feel free to take steps of sizes other than one.

● If you do, make sure that…
● … you actually need all your base cases. Avoid redundant 

base cases that are already covered by a mix of other base 
cases and your inductive step.

● … you cover all the numbers you need to cover. Trace out 
your reasoning and make sure all the numbers you need 
to cover really are covered.

● As with a proof by cases, you don’t need to 
separately prove you’ve covered all the options. We 
trust you.  �



  

More on Square Subdivisions

● There are a ton of interesting questions 
that come up when trying to subdivide a 
rectangle or square into smaller squares.

● In fact, one of the major players in early 
graph theory (William Tutte) got his start 
playing around with these problems.

● Good starting resource: this Numberphile 
video on Squaring the Square.

https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be


  

Complete Induction



  

Let P be some predicate. The principle of complete 
induction states that if

P(0) is true

and

for all k ∈ ℕ, if P(0), …, and P(k) are true,
then P(k+1) is true

then

∀n ∈ ℕ. P(n)

If it starts true…
…and it stays 

true…

…then it's 
always true.



  

Mathematical Induction

● You can write proofs using the principle 
of mathematical induction as follows: 
● Define some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that

P(k) is true. 
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

Complete Induction

● You can write proofs using the principle 
of complete induction as follows:
● Define some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that 

P(0), P(1), P(2), …, and P(k) are all true.
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

An Example: Eating a Chocolate Bar



  



  

Eating a Chocolate Bar

● You have a 1 × n chocolate bar subdivided 
into 1 × 1 squares.

● You eat the chocolate bar from left to right 
by breaking off one or more squares and 
eating them in one (possibly enormous) bite.

● How many ways can you eat a…
● 1 × 1 chocolate bar?
● 1 × 2 chocolate bar?
● 1 × 3 chocolate bar?
● 1 × 4 chocolate bar?
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the answer for 1x3? 

Go to 
PollEv.com/cs103spr25 

1 × 1: (1)

1 × 2: (1, 1), (2)

1 × 3: (1, 1, 1), (1, 2),

           (2, 1), (3)



  There are eight ways to eat a 1 × 4 chocolate bar.



  

Eating a Chocolate Bar

● There’s…
● 1 way to eat a 1 × 1 chocolate bar,
● 2 ways to eat a 1 × 2 chocolate bar,
● 4 ways to eat a 1 × 3 chocolate bar, and
● 8 ways to eat a 1 × 4 chocolate bar.

● Our guess: There are 2n – 1 ways to eat a 1 × n 
chocolate bar for any natural number n ≥ 1.

● And we think it has something to do with this insight: 
we eat the bar either by
● eating the whole thing in one bite, or
● eating some piece of size k, then eating the remaining n – k 

pieces however we’d like.
● Let’s formalize this!



  

Theorem: For any natural number n ≥ 1, there are exactly 2n – 1 ways to eat a
1 × n chocolate bar from left to right.

Proof: Let P(n) be the statement “there are exactly 2n – 1 ways to eat a 1 × n
chocolate bar from left to right.” We will prove by induction that P(n)
holds for all natural numbers n ≥ 1, from which the theorem follows.

As our base case, we prove P(1), that there is exactly 21 – 1 = 1 way to eat a
1 × 1 chocolate bar from left to right. The only option here is to eat the
entire chocolate bar at once, so there’s just one way to eat it, as needed.

For our inductive step, assume for some arbitrary natural number k ≥ 1 
that P(1), …, and P(k) are true. We need to show P(k+1) is true, that there
are exactly 2k ways to eat a 1 × (k+1) chocolate bar.

There are two options for how to eat the bar. First, we can eat the whole
chocolate bar in one bite. Second, we could eat a piece of size r for some
1 ≤ r ≤ k, leaving a chocolate bar of size k+1–r, then eat that chocolate
bar from left to right. Since 1 ≤ r ≤ k, we know that 1 ≤ k+1–r ≤ k, so by
our inductive hypothesis there are 2k – r ways to eat the remainder.

Summing up this first option, plus all choices of r for the second option,
we see that the number of ways to eat the chocolate bar is

1 + 2k-1 + 2k-2 + … + 22 + 21 + 20    =    1 + 2k – 1    =    2k.

Thus P(k+1) holds, completing the induction. ■
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As our base case, we prove P(1), that there is exactly 21 – 1 = 1 way to eat a
1 × 1 chocolate bar from left to right. The only option here is to eat the
entire chocolate bar at once, so there’s just one way to eat it, as needed.

For our inductive step, assume for some arbitrary natural number k ≥ 1 
that P(1), …, and P(k) are true. We need to show P(k+1) is true, that there
are exactly 2k ways to eat a 1 × (k+1) chocolate bar.

There are two options for how to eat the bar. First, we can eat the whole
chocolate bar in one bite. Second, we could eat a piece of size r for some
1 ≤ r ≤ k, leaving a chocolate bar of size k+1–r, then eat that chocolate
bar from left to right. Since 1 ≤ r ≤ k, we know that 1 ≤ k+1–r ≤ k, so by
our inductive hypothesis there are 2k – r ways to eat the remainder.

Summing up this first option, plus all choices of r for the second option,
we see that the number of ways to eat the chocolate bar is

1 + 2k-1 + 2k-2 + … + 22 + 21 + 20    =    1 + 2k – 1    =    2k.

Thus P(k+1) holds, completing the induction. ■



  

More on Chocolate Bars

● Imagine you have an m × n chocolate bar. 
Whenever you eat a square, you have to eat all 
squares above it and to the left.

● How many ways are there to eat the chocolate bar? 

 

 

 

● Open Problem: Find a non-recursive exact formula 
for this number, or give an approximation whose 
error drops to zero as m and n tend toward infinity.



  

Induction vs. Complete Induction

Exactly k Exactly k+1

Regular
Induction

Something(s) 
 less than k 

Exactly k+1

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k Exactly k+1

Regular
Induction

Something(s)
less than k

A bar with
exactly k+1

squares

Complete 
InductionRegular induction is great 

when you know exactly 
how much smaller your 

“smaller” problem instance 
is.

Regular induction is great 
when you know exactly 
how much smaller your 

“smaller” problem instance 
is.



  

Induction vs. Complete Induction

Exactly k
squares Exactly k+1

Regular
Induction

Something(s)
less than k Exactly k+1

Complete 
Induction

Complete induction is great 
when you know things get 

smaller, but you’re not sure 
by how much.

Complete induction is great 
when you know things get 

smaller, but you’re not sure 
by how much.



  

How Not to Induct



  

All Horses are the Same Color

P(n) = “All groups of n horses always 
have the same color”



  

Base case: n = 0 

All Horses are the Same Color

P(0) = “All groups of 0 horses always 
have the same color”

Vacuously true!



  

(for the sake of illustration, pretend arbitrarily picked k = 5)

All Horses are the Same Color
Assume P(k) = “All groups of k horses 
always have the same color”



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

(for the sake of illustration, pretend arbitrarily picked k = 5)
(so k + 1 group is 6)



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

By P(k), these k horses have the same color

(for the sake of illustration, pretend arbitrarily picked k = 5)
(so k + 1 group is 6)



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

By P(k), these k horses have the same color

By P(k), these k horses have the same color

(for the sake of illustration, pretend arbitrarily picked k = 5)
(so k + 1 group is 6)



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

These horses in the middle were in both sets

(for the sake of illustration, pretend arbitrarily picked k = 5)
(so k + 1 group is 6)



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

These horses in the middle were in both sets

And we said that both horses on the ends are 
the same color as these overlapping horses

(for the sake of illustration, pretend arbitrarily picked k = 5)
(so k + 1 group is 6)



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

So all k+1 horses have the same color!

(for the sake of illustration, pretend arbitrarily picked k = 5)
(so k + 1 group is 6)



  

 ⚠ Incorrect!  ⚠ Proof: Let P(n) be the statement “all groups of n 
horses are the same color.” We will prove by induction that P(n) holds 
for all natural numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses. 

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. Now 
consider a group of k+1 horses. Exclude the last horse and look only at 
the first k horses. By the inductive hypothesis, these horses are the 
same color. Next, exclude the first horse and look only at the last k 
horses. Again we see by the inductive hypothesis that these horses are 
the same color. 

Therefore, the first horse is the same color as the non-excluded horses, 
who in turn are the same color as the last horse. Hence the first horse 
excluded, the non-excluded horses, and last horse excluded are all of 
the same color. Thus P(k+1) holds, completing the induction. ■



  

 ⚠ Incorrect!  ⚠ Proof: Let P(n) be the statement “all groups of n 
horses are the same color.” We will prove by induction that P(n) holds 
for all natural numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses. 

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. Now 
consider a group of k+1 horses. Exclude the last horse and look only at 
the first k horses. By the inductive hypothesis, these horses are the 
same color. Next, exclude the first horse and look only at the last k 
horses. Again we see by the inductive hypothesis that these horses are 
the same color. 

Therefore, the first horse is the same color as the non-excluded horses, 
who in turn are the same color as the last horse. Hence the first horse 
excluded, the non-excluded horses, and last horse excluded are all of 
the same color. Thus P(k+1) holds, completing the induction. ■

  1  1

  2  2
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Quick check: Which paragraph has the error?
Go to PollEv.com/cs103spr25 

Quick check: Which paragraph has the error?
Go to PollEv.com/cs103spr25 



  

What’s going on here?



  

 ⚠ Incorrect!  ⚠ Proof: Let P(n) be the statement “all groups of n 
horses are the same color.” We will prove by induction that P(n) holds 
for all natural numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses. 

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. Now 
consider a group of k+1 horses. Exclude the last horse and look only at 
the first k horses. By the inductive hypothesis, these horses are the 
same color. Next, exclude the first horse and look only at the last k 
horses. Again we see by the inductive hypothesis that these horses are 
the same color. 

Therefore, the first horse is the same color as the non-excluded horses, 
who in turn are the same color as the last horse. Hence the first horse 
excluded, the non-excluded horses, and last horse excluded are all of 
the same color. Thus P(k+1) holds, completing the induction. ■

The logic in our inductive step does not 
allow us to get from P(1) to P(2). 

Specifically, there are no non-excluded 
horses that were in both sets.

The logic in our inductive step does not 
allow us to get from P(1) to P(2). 

Specifically, there are no non-excluded 
horses that were in both sets.



  

(now let’s pretend arbitrarily picked k = 1)

All Horses are the Same Color
Assume P(k) = “All groups of k horses 
always have the same color”



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

(for the sake of illustration, pretend arbitrarily picked k = 1)
(so k + 1 group is 2)



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

By P(k), these k horses have the same color

(for the sake of illustration, pretend arbitrarily picked k = 1)
(so k + 1 group is 1)



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

By P(k), these k horses have the same color

(for the sake of illustration, pretend arbitrarily picked k = 1)
(so k + 1 group is 2)

By P(k), these k horses have the same color



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

(for the sake of illustration, pretend arbitrarily picked k = 1)
(so k + 1 group is 2)

The horses in the middle were in both sets



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

(for the sake of illustration, pretend arbitrarily picked k = 1)
(so k + 1 group is 2)

The horses in the middle were in both sets

And we said that both horses on the ends are 
the same color as these overlapping horses



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

(for the sake of illustration, pretend arbitrarily picked k = 1)
(so k + 1 group is 2)

So all k+1 horses have the same color!



  

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

(for the sake of illustration, pretend arbitrarily picked k = 1)
(so k + 1 group is 2)

The horses in the middle were in both sets

!!!

Procedure the 
proof describes 
does not work 

for k < 2.



  

An Important Milestone



  

Recap: Discrete Mathematics

● The past five weeks have focused exclusively 
on discrete mathematics:

Induction    Functions

Graphs      The Pigeonhole Principle

Formal Proofs   Mathematical Logic

Set Theory   Cardinality
● These are building blocks we will use 

throughout the rest of the quarter.
● These are building blocks you will use 

throughout the rest of your CS career.



  

Next Up: Computability Theory

● It's time to switch gears and address the limits 
of what can be computed.

● We'll explore these questions:
● How do we model computation itself?
● What exactly is a computing device?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of 
what computers could ever be made to do.



  

Next Time

● Formal Language Theory
● How are we going to formally model 

computation?
● Finite Automata

● A simple but powerful computing device 
made entirely of math!

● DFAs
● A fundamental building block in computing.
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